
Chaussette Documentation
Release 0.1

Tarek Ziade

June 26, 2012





CONTENTS

i



ii



Chaussette Documentation, Release 0.1

Chaussette is a dead-simple WSGI server that can run against already opened sockets. The main use case is to delegate
the processes and sockets management to Circus.

CONTENTS 1

http://circus.io


Chaussette Documentation, Release 0.1

2 CONTENTS



CHAPTER

ONE

USAGE

Chaussette provides a console script you can launch against a WSGI application, like any WSGI server out there:

$ chaussette myapp
Application is <function myapp at 0x104d97668>
Serving on localhost:8080
Using <class chaussette.backend._wsgiref.ChaussetteServer at 0x104e58d50> as a backend

Chaussette has a specific mode to run against an existing open socket. This can only be used when Chaussette is
forked from another process that has created the socket:

$ chaussette --fd 12 myapp
Application is <function myapp at 0x104d97668>
Serving on fd://12
Using <class chaussette.backend._wsgiref.ChaussetteServer at 0x104e58d50> as a backend

3



Chaussette Documentation, Release 0.1

4 Chapter 1. Usage



CHAPTER

TWO

RUNNING IN CIRCUS

The typical use case is to run Chaussette processes in Circus, which takes care of binding the sockets and spawning
Chaussette processes.

To run your WSGI application using Circus, define a socket section in your configuration file, then add a Chaussette
watcher.

Minimal example:

[circus]
endpoint = tcp://127.0.0.1:5555
pubsub_endpoint = tcp://127.0.0.1:5556
stats_endpoint = tcp://127.0.0.1:5557

[watcher:web]
cmd = chaussette --fd ${socket:web} --backend meinheld server.app
use_sockets = True
numprocesses = 5

[socket:web]
host = 0.0.0.0
port = 8000

When Circus runs, it binds a socket on the 8000 port and passes the file descriptor value to the Chaussette process, by
replacing ${socket:web} by the file number value.

5

http://circus.io


Chaussette Documentation, Release 0.1

6 Chapter 2. Running in Circus



CHAPTER

THREE

BACKENDS

Chaussette is just a bit of glue code on the top of existing WSGI servers, and is organized around back ends.

By default Chaussette uses a pure Python implementation based on waitress, but it also provides more efficient back
ends:

• gevent – based on Gevent’s pywsgi server

• fastgevent – based on Gevent’s wsgi server – faster but does not support streaming.

• meinheld – based on Meinheld’s fast C server

• wsgiref – based on stdlib’s wsgiref package – not for production use.

You can select your backend by using the –backend option and providing its name.

For some backends, you need to make sure the corresponding libraries are installed:

• gevent and fastgevent: pip install gevent

• meinheld : pip install meinheld

If you want to add your favorite WSGI Server as a backend to Chaussette, send me an e-mail !

7



Chaussette Documentation, Release 0.1

8 Chapter 3. Backends



CHAPTER

FOUR

RATIONALE AND DESIGN

Most WGSI servers out there provide advanced features to scale your web applications, like multi-threading or multi-
processing. Depending on the project, the process management features, like respawning processes that die, or adding
new ones on the fly, are not always very advanced.

On the other hand, Circus provides very advanced features to manage your processes, and is able to manage sockets
as well.

The goal of Chaussette is to delegate process and socket management to Circus and just focus on serving requests.

Using a pre-fork model, Circus binds sockets and forks Chaussette processes that are able to accept connections on
those sockets, as child processes.

For more information about this design, read http://blog.ziade.org/2012/06/12/shared-sockets-in-circus.

9

http://blog.ziade.org/2012/06/12/shared-sockets-in-circus


Chaussette Documentation, Release 0.1

10 Chapter 4. Rationale and Design



CHAPTER

FIVE

USEFUL LINKS

• Repository : https://github.com/tarekziade/chaussette

11

https://github.com/tarekziade/chaussette

